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Abstract – Vectors that underpin the natural dispersal of invasive alien species are frequently unknown.
In particular, the passive dispersal (zoochory) of one organism (or propagule) by another, usually more
mobile animal, remains poorly understood. Field observations of the adherence of invasive freshwater
bivalves to other organisms have prompted us to assess the importance of zoochory in the spread of three
prolific invaders: zebra mussel Dreissena polymorpha; quagga mussel Dreissena bugensis; and Asian
clam Corbicula fluminea. An extensive, systematic search of the literature was conducted across multiple
on-line scientific databases using various search terms and associated synonyms. In total, only five
publications fully satisfied the search criteria. It appears that some fish species can internally transport
viable adult D. polymorpha and C. fluminea specimens. Additionally, literature indicates that veligers and
juvenile D. polymorpha can adhere to the external surfaces of waterbirds. Overall, literature suggests that
zoochorous dispersal of invasive bivalves is possible, but likely a rare occurrence. However, even the
establishment of a few individuals (or a single self-fertilising C. fluminea specimen) can, over-time, result
in a substantial population. Here, we highlight knowledge gaps, identify realistic opportunities for data
collection, and suggest management protocols to mitigate the spread of invasive alien species.
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Résumé – Zoochorie de bivalves d’eau douce ; un vecteur négligé dans les invasions biologiques?
Les vecteurs qui sous-tendent la dispersion naturelle des espèces exotiques envahissantes sont souvent
inconnus. En particulier, la dispersion passive (zoochorie) d’un organisme (ou propagule) par un autre,
habituellement plus mobile, reste mal comprise. Les observations sur le terrain de l’adhésion des bivalves
d’eau douce envahissants à d’autres organismes nous ont incité à évaluer l’importance de la zoochorie dans
la propagation de trois envahisseurs prolifiques : la moule zébrée Dreissena polymorpha ; Moule Quagga
Dreissena bugensis ; et la palourde asiatique Corbicula fluminea. Une recherche approfondie et
systématique de la littérature a été menée dans de multiples bases de données scientifiques en ligne utilisant
différents termes de recherche et synonymes associés. Au total, seulement cinq publications ont pleinement
satisfait les critères de recherche. Il semble que certaines espèces de poissons puissent transporter
intérieurement des spécimens adultes viables de D. polymorpha et C. fluminea. En outre, la littérature
indique que les véligères et les D. polymorpha juvéniles peuvent adhérer aux surfaces externes des oiseaux
d’eau. Dans l’ensemble, la littérature suggère que la dispersion par zoochorie des bivalves invasifs est
possible, mais probablement une occurrence rare. Cependant, même l’établissement de quelques individus
(ou un seul spécimen autofécondant de C. fluminea) peut, au fil du temps, entraîner une population
importante. Ici, nous mettons en évidence les lacunes en matière de connaissances, identifions des
opportunités réalistes pour la collecte de données et proposons des protocoles de gestion pour atténuer la
propagation d’espèces exotiques envahissantes.
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1 Introduction
The majority of primary introductions of invasive alien
species (IAS) are considered to have occurred via anthropo-
genic means (Hulme et al., 2008; Solarz et al., 2017).
However, the natural (or ‘unaided by humans’) dispersal of
organisms can also result in the arrival of an IAS in a new
region (Hulme et al., 2016). More importantly, the secondary
spread of IAS from an established source population can often
be facilitated by natural dispersal vectors, including water
currents (hydrochory), wind (anemochory), and other animals
(zoochory) (Bilton et al., 2001; Hulme et al., 2008; Coughlan
et al., 2017b). Recent European Union (EU) and United
States of America (USA) legislation (EU Regulation 1143/
2014 and Safeguarding the Nation from the Impacts of
Invasive Species – amendment to Executive Order 13112,
respectively) seek to prevent, control and eradicate IAS
within both territories. In order to develop comprehensive
IAS prevention and control measures, species risk assess-
ments must consider not only broad invasion pathway
categories, but also specific vectors (Essl et al., 2015).
Currently, however, our understanding of the natural dispersal
processes operating between hydrologically unconnected
water bodies remains limited (Soomers et al., 2013;
Incagnone et al., 2015; Coughlan et al., 2017a).

Zoochorous transport of one organism by another more
mobile animal can facilitate dispersal of various taxa (see
Fig. 1) (Reynolds et al., 2015; Green, 2016; Coughlan et al.,
2017a). Many organisms, particularly propagule stages (e.g.,
seeds, spores, eggs, ephippia, gemmules, statoblasts, or cysts)
can be transported both internally, via the gastrointestinal tract
(gut), or upon the exterior surfaces of other animals. The
association where one organism (or propagule) is externally
transported by another organism is categorised under various
biological relationships which include, inter alia, ectozoo-
chory, phoresis, commensalism, and fouling. Ectozoochory
(synonyms epizoochory, exozoochory), a term originally used
to describe the dispersal of plant propagules via external
adherence to animal vectors, is now widely employed to refer
to external dispersal of a variety of taxa (Reynolds et al., 2015;
Green, 2016; Coughlan et al., 2017a). Endozoochory, a term
originally used to describe seed dispersal, now encompasses
the internal dispersal of a variety of taxa.

The spread of invasive alien bivalves represents a major
threat to the function and biodiversity of freshwater ecosystems
worldwide (Strayer et al., 1999; Sousa et al., 2009; Higgins and
Vander Zanden, 2010; Douda et al., 2017). In particular, zebra
mussel Dreissena polymorpha (Pallas, 1771), quagga mussel,
Dreissenabugensis (Andrusov, 1897) andAsianclamCorbicula
fluminea (Müller, 1774) are prolific invaders, whose presence
can have damaging ecological and economic consequences for
invaded habitats (Pimentel et al., 2005; Sousa et al., 2014;
Karatayev et al., 2015). Moreover, despite management efforts
to reduce invader spread within EU and USA territories, further
range expansion of these bivalves has been observed (e.g.,
Aldridge et al., 2014; Benson, 2014; Caffrey et al., 2016).Under
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optimal conditions, these bivalve species display rapid growth
and high levels of fecundity, and canpotentially formflourishing
populations from a few founder specimens, or in the cases of C.
fluminea, from even one self-fertilising individual (McMahon,
2002). In contrast to many freshwater bivalve species, the life
cycles of these invaders do not include a parasitic larval stages
(Mackie, 1991). Rather, planktonic larval (e.g., veliger) stages
can freely swim within the water column until settlement of the
post-veliger (e.g., juvenile) stages occurs. Both up-stream and
between catchment dispersal of these bivalves has been
predominantly attributed to anthropogenic activities, particular-
ly by recreational water users (e.g., anglers, boaters, and
canoeists) (Kappes and Haase, 2012; Banha et al., 2016).
Nevertheless, possible alternative natural vectors of passive
dispersal remain under-researched, even though these vectors
may facilitate greater levels of invasive bivalve dispersal than is
assumed (Johnson and Carlton, 1996; Kappes and Haase, 2012;
Banha et al., 2016). Field observations of D. polymorpha
attachment to more mobile freshwater organisms (see Fig. 2)
have prompted us to assess the importance of zoochory in the
spread of invasive freshwater bivalves. Here, we examine the
available literature concerning zoochorous dispersal of invasive
freshwater bivalves: D. polymorpha; D. bugensis; and C.
fluminea.

2 Methods

We systematically searched for relevant material using the
on-line scientific databases Thomson-Reuters Web of Science
and Scopus. An additional search for relevant material was
preformed using Google and Google Scholar. All searches
were undertaken in December 2016, and focused on various
terms used in the literature. For example, the principle search
term used to derive relevant material was: (mussel OR clam
OR bivalv* OR dreissena OR corbicula) AND (external OR
internal OR passive OR vector OR foul* OR *zoochorous OR
*chory OR *zoon OR phor* OR gut OR *intestinal) AND
(dispersal OR dispersion). Species scientific names (D.
polymorpha, D. bugensis and C. fluminea) and common
names were also used as search terms. Associated synonyms of
search terms (e.g., epizoon, entozoon, ectozoochory, endo-
zoochory, passive dispersal, fouling, phoresy) were further
used to assess and reduce the number of generated documents.
Moreover, reference lists from all retrieved books and articles
were screened for other relevant publications. Selected
literature was then appraised for inclusion within this paper
based upon pertinence to the core topic, e.g., studies which
directly evaluate zoochorous mediated dispersal of D.
polymorpha, D. bugensis or C. fluminea. There was no
restriction on publication year.

3 Results and discussion

The search yielded 219 and 161 publications from Web of
Science and Scopus, respectively. Google and Google Scholar
did not provide any additional pertinent material, within the
of 8



Fig. 1. Overland long distance dispersal (LDD) (A), short distance dispersal (SDD) (B), and ‘stepping stone’ dispersal (C) of invasive bivalve
species (dot clusters) between isolated (e.g., hydrologically unconnected) freshwater sites via possible zoochorous vectors. Equally, when sites are
hydrologically connected (D) (e.g., streams) additional aquatic vectors, such as fish species, may facilitate LDD, SDD or stepping stone dispersal.
Moreover, zoochorous vectors may intensify invader spread across large aquatic areas (e.g., large lakes). Dashed lines indicate water current.

Fig. 2. (A & B) Two adult zebra mussels Dreissena polymorpha
attached to the dorsal carapace of an odonata nymph Epicordulia sp.
(Corduliidae) larva. The nymph was collected on Lake Mendota,
Madison, WI (43°04038.80 0N 89°24010.60 0W) on 24th October 2016
via a minnow trap in 2m of water (Photo credits, A.L. Stevens). The
criteria used to identify species are described by Bouchard et al.
(2004). (C) Adult crayfish specimen extensively fouled by D.
polymorpha (Photo credit, Minnesota Department of Natural
Resources).
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first ten search-pages. Numerous studies suggested zoochory
as a potential dispersal mechanism for various freshwater
bivalves and other Mollusca species, however, many did not
reference a citation for this assumption. Studies selected for
inclusion within this paper are those which attempted to
experimentally examine zoochorous dispersal of D. poly-
morpha, D. bugensis, or C. fluminea. In total, only five
publications met the full search criteria (Tab. 1).

3.1 Endozoochorous dispersal

Many studies have reported the consumption of invasive
bivalves by fish and bird species (e.g., Robinson andWellborn,
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1988; Hamilton and Davison Ankney, 1994; Tuckeret al.,
1996). In most cases, gut contents or faecal samples appear to
suggest that the consumer can effectively digest D. poly-
morpha, D. bugensis and C. fluminea leaving only shell
fragments (e.g., Hamilton and Davison Ankney, 1994;
Tuckeret al., 1996; Perelloet al., 2015). However, most studies
do not examine endozoochorous dispersal and, therefore, do
not attempt to assess the survival and viability of intact
specimens (if any) found within retrieved gut or faecal
samples. Equally, a variety of freshwater mollusca, such as pea
clams (Sphaeriidae), valve snails (Valvatidae), pond snails
(Lymnaeidae) and mussels (Mytilidae), have been shown to
survive gut passage through different fish and waterbird
species, albeit to various extents (Mackie, 1979; Brown, 2007;
Belz et al., 2012; van Leeuwen et al., 2012).

Literature reviewed here (and many fish and waterbird
dietary studies) indicate (or imply) that D. polymorpha, D.
bugensis, and C. fluminea will not usually survive gut passage.
Remarkably, Gatlin et al. (2013) recorded the survival of C.
fluminea and D. polymorpha that have passed through the gut
of migratory blue catfish (Ictalurus furcatus), a species which
travels up to 689 km in a year (Tripp et al., 2011). However,
any intact bivalve specimens are more likely to be ejected over
much shorter distances as dictated by gut retention times.
Moreover, Gatlin et al. (2013) noted that these bivalves appear
unable to survive gut passage through I. furcatus in waters
above 21.1 °C, however, this is unlikely to overly inhibit
dispersal potential as migrations typically occur when water
temperatures are between 8 and 18 °C. Incidentally, we
hypothesise that the observed increase in bivalve mortality
may be due to greater host metabolic activity, as warmer water
temperatures may increase digestion efficiency of some fish
species (Mizanur et al., 2014; De et al., 2016). Conversely,
higher water temperature can also result in reduced retention
times within the gastrointestinal tract (De et al., 2016).

The feeding ecology of fish and waterbird species, and
associated digestive morphological traits, will likely influence
of 8



Table 1. Studies addressing zoochorus dispersal of zebra mussel Dreissena polymorpha, quagga mussel, Dreissena bugensis and Asian clam
Corbicula fluminea. The bivalve species examined, method of investigation used, and a summary of findings are identified.

Reference Species Method Summary of findings

Endozoochory
Thompson and Sparks (1977) Corbicula fluminea Faecal sample

collection
Live C. fluminea feed to lesser scaup ducks
(Aythya affinis) did not survive gut passage.

Johnson and Carlton (1996) Dreissena polymorpha Faecal sample
collection

Faecal samples recovered from mallard ducks
(Anas platyrhynchos), which consumed juvenile
mussels or concentrated suspensions of veligers,
did not contain any viable specimens.

Gatlin et al. (2013) Corbicula fluminea
Dreissena polymorpha

Faecal sample
collection

Twelve percent of D. polymorpha and 39 % of
C. fluminea consumed in cool water (<21.1 °C)
survived gut passage through migratory blue
catfish (Ictalurus furcatus).

Mack and Andraso (2015) Dreissena bugensis
Dreissena polymorpha

Faecal sample
collection

No dreissenids survived passage through the
gut of round goby (Neogobius melanostomus).

Ectozoochory
Johnson and Carlton (1996) Dreissena polymorpha Experimental

attachment
Veligers and juvenile D. polymorpha transported
(2.5m) between ponds by walking mallard ducks,
<0.5 mussel per trip.

Banha et al. (2016) Dreissena polymorpha Experimental
attachment

Larvae of D. polymorpha can adhere and remain
attached to a mallard duck carcass during
simulated swims (�0.5m s�1) and flights (75 km h�1).
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success of endozoochorous dispersal. Vector species that are
acclimated to a diet containing bivalves are less likely to
facilitate transport than individuals or species which are not.
For example, Mack and Andraso (2015) documented no
survival of dreissenids after gut passage through the round
goby (Neogobius melanostomus). Previously, however,
Andraso et al. (2011) had noted that mature N. melanostomus
specimens can develop molariform teeth typical of those found
in molluscivorous fish to prey on dreissenid mussels. Age,
genetic and environmental factors are suggested to influence
pharyngeal remodelling. Moreover, Index of Relative Impor-
tance analysis of N. melanostomus gut contents indicate a
diet selective of veliger and juvenile dreissenid
mussels (Thompson and Simon, 2014). In contrast, I. furcatus
appears to be preferentially more piscivorous, although it is
often described as an omnivorous opportunistic feeder
(MacAvoy et al., 2000; Aguilar et al., 2016). Therefore, ceteris
paribus, the digestion of bivalves by I. furcatus may be less
efficient than digestion by adult N. melanostomus.

Manywaterbird species are also known to consumebivalves
(Piersma et al., 1993; Hamilton and Davison Ankney, 1994).
Thompson and Sparks (1977) observed that lesser scaup ducks
(Aythya affinis) digested C. fluminea completely. However, A.
affinis is a preferential rather than opportunistic consumer of
macroinvertebrates (Gurney et al., 2017). Within phylogenetic
or ecological constraints, the avian digestive tract can respond to
variable diet composition and quality by changing morphology
and/or activities of digestive enzymes (Piersma et al., 1993; van
Gilsetal., 2003;Kohletal., 2017).Therefore,weargue thatprior
to acclimation of the gastrointestinal tract to the presence of
bivalves within their diet, some waterbirds may facilitate
endozoochorous dispersal. In support of such an argument, van
Leeuwen et al. (2012) retrieved greater numbers of intact aquatic
snail species from faecal samples obtained from smallermallard
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ducks compared to larger individuals. This was surmised to
reflect shorter retention times by smaller ducks, given that gut
length and gizzard size are generally correlated to body mass.
Accordingly, snails likely experienced less exposure to both
gastric enzymes and abrasive mechanical digestion by the avian
gizzard.

It appears that the thermal shock of sudden exposure to the
high internal body temperatures of waterbirds (42 °C), and
possibly hypoxia, can induce high mortality of C. fluminea,
which generally does not tolerate water temperatures above
38 °C (McMahon, 1979; Lucy et al., 2012). Similarly, the
upper thermal limit of D. bugensis is likely between 25 and
36 °C (Spidle et al., 1995). However, warm water (>15 °C)
acclimated D. polymorpha can survive water temperatures up
to 40 °C for between 20 and 75minutes, depending on the rate
of temperature increase (McMahon and Ussery, 1995; Spidle
et al., 1995; Beyer et al., 2011) and therefore, may survive
rapid passage through the avian gut if exposed to minimal
abrasive damage. Accordingly, both fish and waterbird
consumer species which are not acclimated to the presence
of bivalves within their diet may potentially facilitate a
dispersal event.

3.2 Ectozoochorous dispersal

Several publications cited anecdotal accounts detailing
ectozoochorous dispersal of various bivalve species (see Rees
(1965) for a collection of these accounts), no anecdotes
concerning the ectozoochorous dispersal ofD. polymorpha,D.
bugensis or C. fluminea were found. However, Johnson and
Carlton (1996) observed that walking mallard ducks (Anas
platyrhynchos) could transport larvae and juvenile D.
polymorpha a distance of 2.5m between ponds, albeit at a
rate of<0.5 mussel per trip. More recently, Banha et al. (2016)
of 8
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recorded the adherence and continued attachment of D.
polymorpha larvae to a mallard duck carcass during simulated
swims (�0.5m s�1). Equally, assuming an average flight speed
of 75 kmh�1, Banha et al. calculate that adhering larvae could
be transported 145 km by ducks in a long-distance dispersal
(LDD) event, with a 50% chance of survival.

The adherence (or biofouling) of D. polymorpha to other
freshwater inhabitants such as Gastropoda, crayfish species,
and dragonfly (Insecta: Odonata) nymphs has been well
documented (e.g. Fincke and Tylczak, 2011). In particular, D.
polymorpha, which is capable of secondary settlement and
active reattachment, has been observed to attach, detach and
subsequently reattach to Odonata nymphs and crayfish hosts
when in search of a suitable substrate to inhabit (Fig. 2) (Ďuri�s
et al., 2007; Hughes and Fincke, 2012). Interestingly, both
Odonata nymphs and freshwater crayfish species are capable
of short overland translocation between waterbodies. More-
over, these host species can shed their entire ‘mussel load’
upon cuticle moult, which is likely to deposit any adhering
bivalves within the freshwater system (Ďuri�s et al., 2007;
Hughes and Fincke, 2012). Surprisingly, our review of the
literature indicates that the adherence of dreissenidae to mobile
invertebrates has not been examined in the context of
zoochorous dispersal.

Equally, no experimental studies concerning the role of
birds � or indeed, large semi-aquatic and/or mud wallowing
vertebrate species (e.g. otters, boars, muskrats etc.) � as
possible vectors of ectozoochorous dispersal for D. bugensis
or C. fluminea were obtained from the literature. Both
Johnson and Carlton (1996) and Banha et al. (2016) have
shown that waterbirds, such as ducks, can facilitate short-
distance dispersal (SDD) of D. polymorpha veligers.
However, over time, SDD may lead to LDD through multiple
SDD events; collectively known as ‘stepping-stone’ dispersal
(Fig. 1) (Coughlan et al., 2017a, 2017b). Additionally, while
Johnson and Carlton (1996) suggest that the rate of
attachment of D. polymorpha to waterbirds is low, only
scant experimental detail is provided. Studies such as Águas
et al. (2014), Anastácio et al. (2014), and Banha et al. (2016)
have highlighted the importance of aquatic invertebrate
densities, water depth and exposure time upon the probability
of aquatic invertebrate contact and attachment with water-
birds. Accordingly, the density of waterbirds will also
influence the probability of contact with aquatic invertebrates
and subsequent bird-mediated ectozoochorous dispersal
(Coughlan et al., 2017a). While ectozoochorous dispersal
of D. bugensis and C. fluminea has not been examined, these
species are likely to adhere to waterbirds in a similar fashion
to D. polymorpha. In particular, the production of ctenidial
mucillagineous (byssal) threads by juvenile C. fluminea are
thought to aid floatation, zoochory and anthropogenic
dispersal (McMahon, 1982).

If adherence is maintained, bivalves will need to survive the
translocation process. This will likely become particularly
arduous should a vector leave the aquatic medium. Ricciardi
et al. (1995) indicated that adult D. polymorpha can survive
(77.5% of specimens) 24 hrs aerial exposure at 30 °C and 50%
relative humidity (RH). Greater survival (96.7%) was observed
under colder conditions (20 °C and 50% RH). In contrast, only
40% ofD. bugensis specimens survived 24 hr exposure to these
colder conditions (20 °C and 50% RH). In addition, Byrne et al.
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(1988) observed a 50% mortality rate in adult C. fluminea
aerially exposed to 25 °C and 53% RH for 73 hrs. However,
specimens exposed to warmer conditions (35 °C and 53% RH)
displayed 50% mortality after 24 hrs. Recently, Coughlan et al.
(2015a, b) measured the microclimatic conditions found within
the plumage of mallard ducks. While temperature and RH were
found to vary with the external anatomical surfaces (e.g.,
posterior neck, crural, crissum) ofA. platyrhynchos, on average,
ducks displayed temperatures of between 21 and 33 °C, and RH
between 58.4 and 72.8%. Therefore, we surmise that even at the
highest temperature and lowest RH combination found within
mallard plumage, entangled adult D. polymorpha and C.
fluminea may survive for up to 24 hrs, if not longer. Bivalves
adhering to the feet of waterbirds are likely to be exposed to
cooler temperatures, particularly in more temperate regions.
However, temperature andhumiditywill dependonseasonal and
local conditions.
3.3 Post dispersal

A suitable receiving environment is essential for successful
dispersal (Coughlan et al., 2017a). Freshwater fish do not leave
the aquatic medium, and waterbirds often excrete faecal matter
within aquatic sites. Thus, it seems reasonable to conclude that
if bivalves survive endozoochory, they can be deposited within
suitable freshwater habitats. Equally, detachment of an
adhering organism can occur at any stage during ectozoochory
when attachment fails. Waterbirds frequently move between
freshwater sites, and therefore, it is likely that detachment can
occur at a suitable location. In particular, bivalves adhering to
birds via the ‘grip’ of their closed gape, may release when
brought into contact with freshwater by a vectorbird. For
example, Banha et al. (2014) observed that non-native snails
(Pysella acuta) maintained attachment to a human vector (off-
road vehicle) for circa 100 km, and subsequent detachment
was promoted by contact with freshwater. Moreover, many
waterbird species will often preen and wash themselves with
freshwater, which may facilitate detachment of plumage
enmeshed bivalves in a suitable environment.

4 Conclusion and recommendations

Our systematic search of the literature revealed only five
studies that specifically attempted to examine zoochorous
dispersal of invasive D. polymorpha, D. bugensis, or C.
fluminea. Overall, when taken together, these publications
suggest that zoochorous dispersal of invasive freshwater
bivalves is possible. However, given that many potential vector
species consistently move between invaded and non-invaded
sites, and that the recorded rate of invasive spread is often low
(e.g., Caffrey et al., 2016), zoochorous LDD may be a limited,
if not rare, occurrence (Coughlan et al., 2017a). Correspond-
ingly, the recorded rate of natural up-stream dispersal and
overland translocation of these invasive bivalves to adjacent
(and hydrologically unconnected) waterbodies is slow (Voelz
et al., 1998; Kappes and Haase, 2012). Therefore, in agreement
with postulations found within the literature, anthropogenic
vectors likely present a higher potential for invasive bivalve
dispersal (e.g., Voelz et al., 1998; Kappes and Haase, 2012;
Marescaux et al., 2012; Banha et al., 2016; Solarz et al., 2017).
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Moreover, in agreement with Solarz et al. (2017), given the
often limited resources available to tackle biological invasions,
the challenging question of zoochorous dispersal cannot be a
priority management issue. However, there remain substantial
knowledge gaps concerning zoochorous dispersal of freshwa-
ter IAS, and in order to comply with good preventative
biosecurity practices, potential vectors will need to be
examined in more detail. Here, we identify key areas for
further study, realistic opportunities for data collection, and
management protocols for mitigation of IAS spread.

The ability of freshwater fish to disperse invasive bivalves
merits further investigation. In particular, knowledge of gut
retention times for a catalogue of potential vector species is
needed (Gatlin et al., 2013). Gut retention and survival of
endozoochory can be analysed through ex situ feeding trials,
focussing on the appearance of viable adult bivalves within gut
or faecal samples. Such knowledge can be used to mitigate
against further bivalve spread, by developing minimum
quarantine times for fish caught and relocated for restocking
purposes. Equally, other potential zoochorous vectors also
need to be considered. For example, large semi-aquatic
mammals have been shown to externally transport various
aquatic invertebrates (Waterkeyn et al., 2010). Moreover,
possible dispersal of bivalves by other freshwater inhabitants
such as crayfish, freshwater turtles, and Odonatanymphs
should be examined in greater detail. While management of
natural dispersal by vector organisms is problematic in the
extreme (Solarz et al., 2017), any animal which is deliberately
taken from an invaded site, or equally, a site classified as being
at risk of invasion, should be examined for the external
adherence of ‘hitch-hikers’. This is of particular importance if
the animal is to be relocated and released into an uninvaded
site.Awareness of zoochory and the importance of incidental in
situ data collection needs to be promoted. A variety of nature
enthusiasts, photographers, ecologists, conservationists, game
hunters, wildlife and fisheries officers, bird ringers and field
ornithologists come in contact with, deliberately observe, and
often handle a variety of wildlife. It is not unlikely that
instances of zoochory have been observed but remain
undocumented. Notable examples include Green and Figuer-
ola (2005) and Tøttrup et al. (2010), who documented the
adherence of live cockle Cerastoderma edule to shorebirds
(n= 4), and the attachment of non-native barnacles (up to >30
individual adult specimens) to migratory lesser black-backed
gulls Larus fuscus (n = 7), respectively. Moreover, inseveral
studies the combing of plumage has highlighted the adherence
of invertebrates to waterbirds (e.g., Reynolds and Cumming,
2015). Therefore, in order to accurately determine the
frequency of bird-mediated ectozoochory, bird ringers and
game hunters should be incentivised to work with research
groups to provide greater access to samples. Citizen science
initiatives to increase the collection and cataloguing of such
observations across all potential vector taxa should be
encouraged by IAS managers and research groups. Equally,
as part of citizen science initiatives, anglers or game hunters
should be encouraged to examine gut contents of caught fish or
birds and report any intact adult bivalves found.

While this review has focused on zoochorous dispersal of
invasive freshwater bivalves, a growing body of research
suggests zoochorymay contribute to the spread of awide variety
of IAS, including gastropoda, amphipoda and freshwater
Page 6
arthropoda (e.g., juvenile crayfish) (Swanson, 1984; Reynolds
et al., 2015; Green, 2016). Notably, New Zealand mud snails
(Potamopyrgus antipodarum), an emerging freshwater invader
in the USA, has been shown to survive gut passage through
several fish species (see Bruce et al., 2009). Accordingly, the
incorporationof zoochorybiosecuritymeasures (e.g., quarantine
times) is urgently requiredwithin IASmanagement strategies to
mitigate against local invader spread.
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